查看原文
其他

华科黄云辉&李真课题组Adv Energy Mater:阳离子添加剂诱导Zn(002)晶面优先生长实现水系锌离子电池的长循环寿命

新威智能App 新威 2022-11-26


原创声明:本文为【新威智能】原创文章,转载及相关事宜请联系小智(微信号:nwMobile)。


文章信息

第一作者:张煌伟、钟芸

通讯作者:黄云辉、李真

单位:华中科技大学


研究背景
水锌离子电池(AZIBs)由于锌负极具有较高的比容量(820 mAh g−1和5855 mAh cm−3),较低的氧化还原电位(−0.762 V vs SHE),以及较低的成本而备受关注。然而,锌枝晶的生长和副反应等问题严重阻碍了AZIBs的大规模应用,其中,锌枝晶的生长是导致电池短路失效的主要问题。使用电解液添加剂是一种简单有效的抑制锌枝晶生长的策略,但目前大部分添加剂在长期循环过程中作用效果不稳定甚至会效果减弱,且大部分添加剂在较大的电流密度与沉积量条件下难以维持其抑制枝晶生长的效果。因此,亟需寻找一种长循环时效果稳定且可以经受住大的沉积/剥离量的添加剂来抑制枝晶的生长。

成果简介

近期,Advanced Energy Materials上发表的一篇题为“Inducing the Preferential Growth of Zn (002) Plane for Long Cycle Aqueous Zn-Ion Batteries”的文章,提出了一种简单且效果良好的抑制锌枝晶生长的策略。利用阳离子添加剂“1-丁基-3-甲基咪唑阳离子(BMIm+)”来诱导Zn(002)晶面的优先生长,从而抑制锌枝晶的生长。该添加剂在长期循环过程中可以稳定地诱导(002)晶面的优先生长,且在大电流密度和大沉积量条件下仍可以很好地抑制锌枝晶的生长。在10.0 mA cm-2的电流密度和10.0 mAh cm-2的沉积量下,对称电池实现了1000 h的循环寿命。此外,在0.4 A g−1的条件下,软包全电池也可以稳定地循环240圈。


关键创新

1、 BMIm+对锌的不同晶面具有不同的吸附能力,会优先吸附于枝晶容易生长的晶面抑制锌枝晶的生长;

2、 BMIm+对Zn(002)晶面的诱导效果不因沉积层的结构重排而减弱,在长循环过程中保持稳定;

3、 即使在大电流密度和大沉积量的条件下,该添加剂仍可以较好地抑制锌枝晶的生长。

图文解读

1. BMIm+在AZIBs循环过程中诱导Zn(002)面优先生长的示意图。

 

Scheme 1. Schematic of preferential growth of (002) plane induced by BMIm+ ion during cycling of AZIBs.

要点:

在含有0.02 M BMIm+的2 M ZnSO4水溶液中,BMIm+会优先吸附在容易形成枝晶的晶面上,诱导锌离子沉积到Zn(002)晶面上从而抑制锌枝晶的生长。


2. BMIm+诱导效果及机理表征

 

Figure 1. Characterization of manipulation effect and mechanism of BMIm+ ion. a) FTIR spectra of BMImOTf ionic liquid and 2 M ZnSOelectrolytes with different concentrations of BMIm+ ions. XRD patterns of Zn anodes: b) comparison of pristine, after 30 cycles in Blank (short circuit) and 50 cycles in 0.02 M BMIm+; c) after 500 cycles in 0.02 M BMIm+. Inset is the RTC of Zn anodes cycled in Blank (short circuit) and 0.02 M BMIm+ (500 cycles). d) Adsorption energy of BMIm+ ion on different crystal planes of Zn metal.

要点:

1、在BMIm+的作用下,锌负极循环50圈时(002)晶面的峰强就达到了最强,在循环500圈时峰强进一步增强,说明该添加剂在长循环的过程中作用效果稳定

2、通过DFT计算可知,BMIm+会优先吸附在Zn(100)和Zn(101)晶面,最后才会吸附在Zn(002)晶面,意味着该添加剂在合适的浓度(0.02 M)时可以起到对(002)晶面最佳的诱导效果。

 

3.沉积形貌分析

 

Figure 2. Observation of Zn anodes morphology. SEM images of Zn anodes after 10 cycles in a) Blank and b) 0.02 M BMIm+ at 5 mA cm−2 with a capacity of 5 mAh cm−2. SEM images of Zn anodes in c) Blank after cycling (30 cycles) and d) 0.02 M BMIm+ after 100 cycles at 5 mA cm−2 with a capacity of 5 mAh cm−2. In situ optical visualization observations of Zn2+ deposition in e) Blank and f) 0.02 M BMIm+. The UTM optical images and corresponding reconstructed 3D morphology for the surfaces of g) pristine Zn plate and Zn electrodes after 10 cycles in h) Blank and i) 0.02 M BMIm+.

要点:

通过对比可以发现,在含有BMIm+的电解液中循环的锌负极表面平整且致密

 

4. 对称电池性能分析 

 

Figure 3. Performance of Zn||Zn symmetric cells. Voltage-time profiles of Zn||Zn symmetric cells at different current densities and capacities: a) 2 mA cm−2 with a capacity of 1 mAh cm−2; b) 5 mA cm−2 with a capacity of 5 mAh cm−2; c) 10 mA cm−2 with a capacity of 10 mAh cm−2. d) Comparison of cumulative capacity plated between this work and the previously reported ones which could manipulate the crystal orientation.

要点:

1、无论在较小的电流密度和沉积量,还是在较大的电流密度与沉积量条件下,BMIm+都可以很好地抑制锌枝晶的生长,实现电池的长循环寿命

2、相比于已有的大部分同类型的工作,使用BMIm+添加剂的方式不仅可以在电池长期循环过程中保持稳定的诱导效果,而且其效果十分具有竞争力,是一种简单且效果优异的抑制锌枝晶生长的方式

 

5. 水系Zn-Cu半电池

 

Figure 4. Performance of Zn||Cu cells. a) The CE of Zn||Cu cells at 2 mA cm−2 with a capacity of 1 mAh cm−2 and corresponding voltage profiles at various cycles in b) Blank and c) 0.02 M BMIm+. d) The CE of Zn||Cu cells at 10 mA cm−2 with a capacity of 10 mAh cm−2

要点:

在含有BMIm+的电解液中,Zn-Cu半电池可以达到平均库伦效率99.8%,并且同样可以实现长循环寿命(2 mA cm−2−1 mAh cm−2 ,4500圈;10 mA cm−2−10 mAh cm−2 ,480圈)。

 

6. 水系Zn-NH4V4O10扣式全电池

 

Figure 5. Electrochemical performance of NH4V4O10||Zn cells operated in Blank and 0.02 M BMIm+. a) Cyclic voltammetry plots at a scan rate of 0.1 mV s−1. b) Voltage profiles at different cycles at a current density of 0.5 A g−1. c) The XRD patterns of Zn anodes in NH4V4O10||Zn cells after cycling in different electrolyte at 0.5 A g−1. d) SEM images of Zn anodes after cycling. e) Long-term cycle performance of cells at a current density of 0.5 A g−1. f) Long-term cycle performance of cells at a current density of 1 A g−1.

要点:

1、在Zn-NH4V4O10扣式全电池中,BMIm+可以起到很好的抑制枝晶生长的效果实现电池长的循环寿命

2、在添加剂的诱导效果下,形成了平整且致密的沉积层,对析氢腐蚀等副反应也起到了很好的抑制效果

 

7. 水系Zn-NH4V4O10软包全电池

 

Figure 6. Electrochemical performance of NH4V4O10||Zn pouch cells operated in Blank and 0.02 M BMIm+. a) Long-term cycle performance of pouch cells at a current density of 0.4 A g−1. b) Voltage profiles of pouch cells operated in Blank at different cycles at a current density of 0.4 A g−1. c) Voltage profiles of pouch cells operated in 0.02 M BMIm+ at different cycles at a current density of 0.4 A g−1. d) A digital photograph showing LEDs powered by two pouch cells in series operated in 0.02 M BMIm+.

要点:

在软包全电池中,BMIm+同样可以起到很好的抑制枝晶生长的效果并维持软包电池较长的循环寿命


研究结论
通过使用阳离子添加剂(BMIm+)这一简单且有效的抑制锌枝晶生长的方式,实现了AZIBs的长循环寿命。该类添加剂对锌的不同晶面具有不同的吸附能力,在最佳浓度下可以实现很好的诱导Zn(002)晶面优先生长的效果,在长循环过程中稳定地起作用,且在大电流密度与大沉积量条件下作用效果良好。用该类添加剂来抑制锌枝晶的生长为AZIBs的商业化应用提供了具有竞争力的策略。

通讯作者简介

黄云辉教授:华中科技大学教授,博士生导师,2010-2017年任材料科学与工程学院院长,现为校学术委员会副主任,同济大学兼职教授;国家杰出青年科学基金获得者,新世纪百千万人才工程国家级人选,国务院政府特殊津贴获得者。在北京大学获得学士、硕士和博士学位,先后在复旦大学、日本东京工业大学、美国得州大学奥斯汀分校工作或从事博士后研究。曾师从高小霞先生和徐光宪先生从事电分析化学和稀土无机化学研究,2004-2007年师从诺贝尔化学奖得主John B. Goodenough教授从事锂离子电池和固体氧化物燃料电池研究,2008年回国工作。主要研究领域为新能源材料与器件,包括锂离子电池、下一代电池(锂硫电池、锂空气电池)、钠离子电池、固体氧化物燃料电池,在Science、Energy Environ. Sci.、Adv. Mater.等期刊上发表学术论文400余篇,论文被引用3万次,H-因子84,入选科睿唯安材料领域全球高被引科学家(2018、2019)和爱思唯尔中国高被引学者(2018、2019),授权或公开专利40余件。2015年获教育部自然科学一等奖、2016年获国家自然科学二等奖(均排1)。

李真教授:华中科技大学教授,博士生导师,2020年入选国家海外高层次青年人才计划,2019年入选湖北省“百人计划”青年百人,2017年获湖北省优秀博士学位论文,2020年获湖北省自然科学一等奖(“基于协同传输机制的新型下一代电池关键材料”,排名4/5)。于2014年在华中科技大学获得博士学位,2015-2018年在新加坡南洋理工大学从事博士后研究。主要研究锂离子电池、金属硫基电池、水系电池、固态电池、新型电池监测技术等,主持国家重点研发计划青年科学家课题、国家自然科学基金面上项目和湖北省技术创新专项子课题等,在Nat. Commun.,Sci. Adv.,Joule,Adv. Mater.,Angew. Chem. Int. Ed.等期刊发表论文40余篇,公开或获授权发明专利20余项。

 课题组网站 

http://sysdoing.mat.hust.edu.cn/



文章链接

Inducing the Preferential Growth of Zn (002) Plane for Long Cycle Aqueous Zn-Ion Batteries

https://doi.org/10.1002/aenm.202203254

 码上阅读原文 


往期推荐

新威LIMS:大数据加持的样品管理有多高效?

新威LIMS:权限管理 | 实验室管理的核心


“阅读原文”一起来充电吧!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存